当前位置:首页 > 教学资源

小数的意义教案【多篇】

时间:2025-01-19 08:53:27
小数的意义教案【多篇】

[前言]小数的意义教案【多篇】为网友投稿推荐,但愿对你的学习工作带来帮助。

小数的意义教案 篇一

教学目标

1.进一步巩固小数乘法的意义和计算法则,并会解答求一个数的若干倍的应用题.

2.提高学生计算能力和估算能力.

3.培养学生认真计算、自觉检验的好习惯.

教学重点

正确、熟练地计算较复杂的小数乘法.

教学难点

根据小数乘法的意义正确判断积与被乘数的大小关系.

教学过程()

一、检查复习

(一)口算

0.9×6 7×0.08 1.87×0 0.3×0.6

0.24×2 1.4×0.3 1.6×5 4×0.25

60×0.5 7.8×1

(二)说出下面各算式表示的意义

2.4×0.8 1.36×4 2.58×0.2

二、指导探索

(一)教学例3 0.056×0.15

1.学生独立计算,指名板演.

2.指名说一说计算过程.

教师提问:乘得的积的小数位数不够时,该怎么办?

3.指导学生验算方法

教师提问:怎样检验小数乘法计算是否正确?

(运算乘法交换律检验;再重新算一遍;检查尾数和积的小数位数等)

(二)教学例4

一个奶牛场八月份产奶18.5吨.九月份的产量是八月份的2.4倍.九月份产奶多少吨?

1.独立解答.

2.教师提问:

(1)你是根据什么列式的?(一倍数×倍数=几倍数)

(2)18.5×2.4所表示的意义是什么?(表示求18.5的2.4倍是多少)

3.比较:例3和例4的两个算式,积与被乘数比较,谁大?谁小?

4.练习:不计算,说明下面各算式中积与被乘数的关系.

10.8×0.9 2.4×1.8 50×0.36 0.48×0.75

讨论:在什么情况下,积小于第一个因数?

在什么情况下,积等于第一个因数?

在什么情况下,积大于第一个因数?

5.小结:当第二个因数比1小时,积比第一个因数(零除外)小;

当第二个因数等于1时,积等于第一个因数(零除外);

当第二个因数比1大时,积比第一个因数(零除外)大;

6.练习:不计算,判断下面各题的结果是否正确.

0.72×0.15=1.08 0.36×1.8=0.648

三、质疑小结

(一)今天你都有什么收获?

(二)对于今天的学习还有什么问题?

四、反馈调节

(一)计算

0.37×2.9 0.56×0.08 0.072×0.15

0.18×8.45 4.5×0.002 3.7×0.016

(二)判断对错.

1.0.6时等于6分.( )

2.一个数的1.02倍比原来的数要大.( )

3.两个因数的小数位数的和是4,积的小数位数也一定是4.( )

(三)工地有水泥24.5吨,沙子的重量是水泥的2.5倍,石子的重量是沙子的4倍,石子有多少吨?

五、课后作业

(一)计算

82×0.9 3.4×1.26 0.039+1.75

2.07×53 20.14-6.87 10-5.29

6.52+72.98 0.36×0.25 0.015×2.04

(二)食品店运来350瓶鲜牛奶,运来酸奶的瓶数是鲜牛奶瓶数的1.8倍.食品店运来多少瓶酸奶?

六、板书设计

小数乘法

教学设计点评

教学设计中充分利用本课的内容,发散学生的思维,提高学生的各种能力。重视学生全面参与教学过程,大胆让学生尝试、讨论,通过对比积与被乘数的大小关系,帮助学生形成技能技巧,提高计算能力。

小数的意义教案 篇二

教学内容:

小数的意义P32P33

教学目标:

1、理解小数的意义,知道一位小数、两位小数、三位小数分别表示十分之几、百分之几、千分之几

2、知道每个数位上的计数单位和相邻两个计数单位间的进率是十,初步认识一个小数的小数部分各数位上有几个这样的单位。

3、通过了解小数的产生和发展过程,提高数学学习的兴趣,增强热爱数学的情感。

教学重点:

理解小数的意义。

教学难点:

会用小数表示计量单位换算的结果。

教学准备:

多媒体课件、米尺。

教学过程:

一、导入新授

师:生活中你在哪些地方见到过小数?你能说说吗?(出示课件)学生回答。

师:生活中这么多的地方用到小数,说明小数的应用十分广泛,无处不在。 请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按整米数和非整米数两类板书)

师:这些不够整米数的部分,如果仍然要用米作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读教材第32页的内容。

师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。但是,小数的意义又是什么呢?这节课,我们继续深入学习小数的知识。

板书:小数的意义。

二、探索发现

1、认识一位小数。

(1)课件出示教材第32页例1米尺图。

把1m平均分成10份,每份长多少分米?1分米是1米的几分之几?

教师介绍出示:十分之一米还可以写成0.1米。

那2分米、3分米呢? 学生试着完成填空。

学生在小组内交流后再全班交流,交流时说说每个分数表示的意义

教师根据学生的回答板书

1分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.1米,3分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.3米

(2)观察上面的等式你能发现分数和小数之间的联系吗?

小数的意义教案 篇三

教学目标:

1、借助计数器,掌握小数的数位。

2、根据小数的数位顺序表,能理解数位顺序表上的计数单位,以及进率关系。

3、结合具体情境,能抽象出小数的基本性质的具体内容,并能牢固掌握和灵活运用。教学重点:

掌握小数的数位和计数单位。

教学难点:

掌握小数的基本性质。

教学准备:

……此处隐藏8720个字……写一写。(请学生板演),同座互相检查,大家交流订正,在这个过程中,鼓励学生质疑。

(52.52525可能出现问题52.5252.52552.52,师生共同辨析)

5、看书P27-28第一自然段,及了解你知道吗?

6、理解有限小数和无限小数的意义。

师:想一想,两个数如果不能得到整数商,所得的商会有哪些情况?请举例说明?

学生小组讨论,汇报。

师适时抛出有限小数,无限小数的概念,并板书,判断前面练习题中的小数哪些是有限小数?哪些是无限小数,使学生明确循环小数属于无限小数。

学生有可能会质疑,结果会不会是无限不循环小数,教师可根据课堂或本班学生实际和学生共同分析。

二、学生小结

三、巩固练习

《小数的意义》教案 篇九

教学目标

(一)熟练地掌握小数乘法和除法的计算法则,进一步理解小数乘除法的意义。

(二)通过归纳整理,提高学生的概括能力。

教学重点和难点

熟练掌握小数乘除法的计算法则,提高学生计算的准确率。

教学过程设计

(一)归纳整理小数乘除法的意义

1.口算下面各题,并说出各算式的意义。

15×3 1。5×3 15×0。3 15÷3

28×2 2。8×2 28×0。2 2。8÷2

25×5 2。5×5 2。5×0。5 2。5÷0。5

12×4 1。2×4 0。12×0。4 0。12÷0。4

2.思考:

①小数乘法的意义有几种情况,是按什么划分的?分别是什么?

②小数除法的意义是什么?

讨论得出:小数乘法的意义包括两种情况,按乘数是整数还是小数划分。当乘数是整数时,表示求几个相同加数的和的简便运算;当乘数是小数时,表示求这个数的十分之几,百分之几,千分之几,……(小数除法的意义是已知两个因素的积与其中的一个因数,求另一个因数的运算。)

3.比较归纳、整理:

看表思考:小数乘除法的意义与整数乘除法的意义有哪些地方相同,有哪些地方不同?

讨论完成下表:

(二)复习小数乘除法的计算法则

1.小数乘法的计算法则。

(1)说出下面各题的积中各有几位小数。

23×0。5 21。4×0。7 27。5×12。03 1。84×0。026

提问:你是根据什么确定积中的小数位数的?为什么?(小数乘法中,积中小数的位数是由因数的小数位数决定的。因数中一共有几位小数,就从积的右边起数出几位,点上小数点。因为把小数乘法转化成整数乘法,因数扩大了多少倍,积也扩大多少倍,要使积不变,就要缩小多少倍。)

(2)根据4×25=100,75×52=3900,你能很快说出下面各题的积吗?

①0。4×2。5=(1);②0。075×0。52=(0。039)。

提问:

①式中的因数共有两位小数,为什么积中没有小数部分?②式中的因数共有五位小数,为什么积中只有三位小数?(因为积的小数部分末尾是零,根据小数的性质被划掉。)

(3)计算并验算:

67×75= 836×25= 125×24=

订正后回答:

0。67×7。5= 8。36×0。25= 0。125×2。4=

小结:

小数乘法与整数乘法计算方法有哪些相同的地方,有哪些不同?

讨论得出:

相同点:把小数乘法转化成整数乘法后,按整数乘法的计算法则算出积。

不同点:小数乘法,还要看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

(4)口算:

0。8×4= 4×0。8= 0。05×20= 20×0。05=

0。03×9= 9×0。03= 1。9×5= 5×1。9=

观察上面的算式:谁的积大于被乘数?谁的积小于被乘数?(乘数大于1时,积小于被乘数;乘数大于1时,积大于被乘数。)

练习:在下题的○中填上>,<或=。

①1。6×1。2○1。6; ②1。4×0○1。4;

③0。24×5○0。24; ④3。7×2。1○3。7;

⑤0×7○0; ⑥0×2。8○0。

上述规律对于⑤,⑥两题为什么不灵了?应该补充什么?(上述规律应该补充“被乘数不为零时”。)

2.小数除法的计算法则。

(1)计算并验算(P34:6):

1。89÷0。54= 7。1÷0。125= 0。51÷0。22=

计算后订正,提问:

①怎样把除数是小数的除法转化为除数是整数的除法?根据什么?(把除数转化为整数。根据商不变的性质,除数扩大了几倍,被除数也扩大几倍。)

②小数除法与整数除法有什么相同点和不同点?(小数除法需要把除数转化成整数,按照整数除法的计算法则进行计算,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在后面添上0再继续除。)

(2)口算:

4。2÷0。6= 1。5÷5= 3。2÷0。8= 2÷4=

哪些算式的商大于被除数?哪些算式的商小于被除数?为什么?

(除数大于1时,商小于被除数;除数小于1时,商大于被除数。)

练习:在下面的○中填上>,<或=。

30÷0。6○30 1。8÷9○1。8 0÷0。2○0

3。6÷4○3。6 27÷0。3○27 0÷1。2○0

上述规律应该补充什么?(上述规律应该补充“被除数不为0时”。)

(三)综合练习

1.口算:

39。78×1= 3。6÷3。6= 2。87×0=

1×0。56= 7。8÷1= 0÷2。87=

“1”与“0”有什么特性?

2.计算并求近似值:P35:2。

小结:怎样取积、差、和、商的近似值?(先算出积、差、和后,用“四舍五入法”取近似值;求商的近似值时,要除到需要保留的数位的下一位,然后再按“四舍五入法”省略尾数。)

3.作业:P35:1,3。

课堂教学设计说明

复习小数乘除法的意义和法则,对整数和小数的乘除法进行了系统的整理和归纳,通过填表的形式,学生明确了它们的联系与区别,把新知识同旧知识联系起来,有利于学生掌握新知识,巩固旧知识。

通过练习,进一步完善了积与被乘数、商与被除数大小关系的规律,培养学生认真审题,细心计算,加强检验,提高计算的正确率和速度。

板书设计

整数乘法:

4×25=100

75×52=3900

小数乘法:

小数除法:

你也可以在搜索更多本站小编为你整理的其他小数的意义教案【多篇】范文。

《小数的意义教案【多篇】.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式